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Small angle neutron scattering (SANS) has been used extensively to investigate the conformation of 
macromolecules. However, the scattered intensity has been found to be extremely sensitive to the 
segregation of the isotopic labelled species. The segregation has resulted in enormous increases in both 
the radius of gyration and the molecular weight. A theoretical treatment based on the Zernicke-Prins 
equation with a modified pair correlation function has been developed in this work; the size and the 
degree of segregation can be calculated from the scattering data using the equations obtained herein. 
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Small angle neutron scattering (SANS) has been 
extensively used to elucidate the conformation of polymer 
molecules in solutions and in blends. Deuterated 
macromolecules are commonly mixed with the 
hydrogenerated macromolecules to obtain scattering 
contrast. One of the well studied polymer systems is 
polyethylene (PEH) blended with the deuterated species 
(PED) which is used as the labelled chain I - 3. Segregation 
of the two species has frequently been observed in this 
blend system and is a consequence of the difference 
between the melting points of these two species. The 
segregation has resulted in enormous increases in the 
radius of gyration R'g and the apparent molecular weight 
M' w as observed by different investigators 1-2. In some 
cases, the apparent molecular weight from SANS can be 
several orders of magnitude larger than that of each of the 
constituent polymers. A theoretical treatment 13 based on 
a paraclustering model has been proposed to account for 
these differences. The validity of such a model has already 
been questioned by others 4. As will be shown later, the 
increase in both M w and Rg from SANS measurements 
can easily be accounted for quantitatively providing the 
centres of mass of the labelled chains are not randomly 
distributed throughout the specimen. Whether the 
labelled chains interconnect themselves to form a 
supernetwork or not will be considered here. Formation 
of such a supernetwork is the essential part of the 
paraclustering model. 

One can approach this problem from the viewpoint 
implied by the well-known Zernicke-Prins 5 equation, 

I(h)=lo(h)lV(~-~-f~f(l--P.(rkj;V") 
v 

sin hr 2 \ 
hr 47tr dr) 

(i) 

where Io(h ) is the scattering constant and is proportional 
to ( b o -  bH) 2, where bD and b.  are the scattering lengths 
per protonated and deuterated monomers, respectively, N 
is the total number of labelled molecules within the 
scattering volume V, f,(h) is the form factor of an 
individual macromolecule of n monomers for both H and 
D species, h is the scattering vector equal to (4n/2)sin 0, 
and Pc(r~ k;V') is the pair correlation function of the centres 
of mass of the PED moleculesj and k. The subscript c of 
the pair correlation function denotes clustering of the 
PED molecules. The symbol v' within the parenthesis of 
the correlation function Pc(rj,k,V') denotes the local specific 
volume of the PED species within the clusters, and v is the 
macroscopic average specific volume defined as V/N. The 
relation between Pc(rj k;V') and the unclustered one P(rj k;V) 
holds the key to the present problem and will be addressed 
in the following sections. 

One simple model of segregation is where the centres of 
mass of the labelled chains are only allowed to exist within 
a portion (tp) of the total volume; the rest of the volume 
being free of the labelled chains. The local concentration 
of the labelled chain within the clusters is therefore N/q~ V 
and zero outside the clusters. It is further assumed that the 
distribution of the centres of mass of the labelled chains 
within the clusters is random. Without further specifying 
the size and the shape distribution of these clusters, one 
can always define another correlation function ~c(r) 5 for 
these clusters regarding these clusters as a homogeneous 
phase and the space outside these clusters as the other 
phase. The physical meaning of the function ~c(r) can be 
understood readily from the following relation between 
the probability function Z(r) and 7~(r) in such a 
hypothetical two phase system. The function Z(r) is 
defined as a conditional probability for a point to be 
located in a cluster provided another point of a distance r 
away is also in a cluster. These two points do not have to 
be in the same clusters. It has been shown 5 that: 
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Z(r) = q~ + (i - ~O)?c(r ). (2) 

(v) The pair correlation function Pc rj,k;~ of the 

clustered system is defined as a probability of finding a 
centre of mass of a labelled chain located within volume 
dv k at a distance rj k away from pointj of volume dvj which 
is occupied by the centre of mass of another labelled chain. 
The above event can be decomposed to the following two 
independent events: within-a volume V containing N/tp 
labelled chains, both ends of rjk are occupied by the 
centres of mass of the labelled chains; concurrently, both 
ends of ri, k are situated within these clusters. Therefore, 

the function Pc rj,k;~ equals the product of the 

probability function of these two independent events 
mentioned above. 

Pc rj k; ~ = 1 (3) 

It is noteworthy that the function Z(r) is normalized by the 
factor ~o in the above equation. This normalization is a 
direct consequence of the definition of the pair correlation 
function P(r). 

The term P(r~,k;tpV/N) denotes a pair correlation 
function in an unclustered system; however, the average 
specific volume occupied by each labelled chain is qgV/N 
instead of V/N. As recognized before 6, the pair correlation 
function (unclustered) does not depend on the labelled 
chain concentration in the case of isotopic labelling 
provided the molecular weights of the H and D species are 
the same. Consequently equation (3) can be written as: 

Pc(rj,k;V)=p(rj,k;V)(l +l  -tPTc(r)) (3a) 

By substituting equation (3a) into equation (1), one has 

'(h)=lo(h)z~(f.~(~-~f~(~zf( 1 --P(rj,k;V)) 
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(4) 

The first two terms of equation (4) represent exactly the 
scattering intensity caused by N labelled chains randomly 
distributed in volume V. The additional contribution to 
the scattering intensity due to clustering or segregation is 
represented by the third term embracing ),c(r), the 
correlation function of the clusters treated as a two-phase 
system. 

Following the work of Debye et al. ~, the function L(r) 
for a system with randomly distributed clusters of 
irregular shape and size can be represented by 

L(r)=e-'/" (5) 

where a is the so called correlation length. The average 
linear dimension or the chord length l c of the clusters is 
related to a through the well-known Porod relation 8 

a 
Ic - 1 - q~ ( 6 )  

From the same reasoning, the average opening size 
between the clusters is simply afip where tp is the volume 
fraction occupied by clusters as defined above. 

The pair correlation function P(r i k; V/N) of a randomly 
distributed case arises mainly from 'the excluded volume 
effect among the centres of mass of the macromolecules. 
The long chain molecules are known to be highly 
interpenetrated in a bulk system. Nevertheless the centres 
of mass of molecules are not likely to overlap each other. 
The linear dimension l of this excluded volume is expected 
to be much smaller than the radius of gyration Rg of 
individual molecule, consequently, the contribution of 
intermolecular scattering to the total scattering intensity 
is insignificant for the isotopic labelling cases 9. One can 
approximate the pair correlation function by the 
following formula 

to demonstrate the idea that for two or more centres of 
mass of long chain molecules gathered within a small 
vo lume  13 is not favourable. The exact functional form of 
P(rj,k;V/N ) is not essential to the forthcoming derivation 
since the contribution to the scattering intensity arising 
from it will be neglected in the simplifications used later 
on. 

By substituting equations (5) and (7) into the third term 
of equation (4), the additional scattering caused by 
segregation can be expressed as 

~ 2 _ _ 2  1 - ~p V sin hr 2 

V 

~r2 - - 2  1 - ¢p - ~ f.(h) (~-~f(e\ / j  '/" ,/,.sinhr 2 - - e -  ) ~ r  nrdr  

(8) 

where 1 '= al/(a + 1) and is a quantity even smaller than 1. 
From certain experimental data 1, it is clear that the 

additional contribution to scattering intensity due to 
segregation manifests itself mainly in the vicinity of 
h R 9 ~< 1. At a higher h region, the segregation has little 
effect on the scattering intensity and the scattering is 
believed to arise largely from intramolecular correlation. 
Within such a low angular region, the approximation 
scheme similar to that used in deriving the Guinier 
equation is a reasonable one when applied to both 
and f,(h) 2, and to the integral of equation (8) as follows. 

In the Guinier region, i.e., h Rg ~< 1, both f2(h) and f,(h)2 
for an isotropic specimen can be expressed as 

(9) 
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By substituting equations (8) and (9) into equation (4) and 
carrying out the integration one obtains 

1 ~ (  kl3 1-qJF ka 3 kl '3 ~]'~ 

(lO) 

where k is a constant equal to 8zr. The term containing / in 
the above equation represents the contribution to 
scattering intensity from intermolecular origin. Such a 
contribution has been found to be negligible 9 in the case 
of isotopic blends, consequently, this term will be 
neglected hereafter. Since 1' is even smaller than l as is 
evident from the definition of l', the term containing l' will 
also be neglected. All these simplifications result in 

R 2h2 \ /  I'~ 1--(p ka 3 "~ 
,(h)~lo(h)s~n 2 1 - - °  3 ) t l +  V q0 (1--i-h~-aS~) ' 

(10a) 

In the small angle region where ha<<. 1, the above 
equation can be approximated further by neglecting all 
the terms with order higher than h2a2: 

l(h) N n 2 (  1 -+ kN(1 -q0)a 3 
loth) - \ Vq~ 

. 2 f R  2 k N l - q o R 2 a  3 2kNl-q)a5~ '  ~ 
- n  t 3 +  V q) 3 q V ?/ 

The average number, Y, of labelled chains per cluster with 
an average linear dimension of I c can be expressed as 

y _ l c 31~ _ a 31~. 

qoV vqo(l -tO) 3" (12) 

The relation between a, q) and I c is given in equation (6) 
above. Equation (11)can then be rewritten in terms of Y, 
the correlation length a, and the fraction q~ of volume 
occupied by the labelled chains. This equation is 

I(h) . . . f f l n Z ( l + k ( l _ q ~ ) , y ) ( l _ h 2 ( ~ _  2k(1-~o)4ya2~ 
lo(h ) - + 1 + k(1 - ~0)* Y ) )  

(13) 

Consequently, the apparent molecular weight M~ and the 
corresponding radius of gyration R' o are larger than the 
corresponding quantities of the individual labelled chain 
by the following factors: 

M~ = l +k(1 - q 0 4 y  (14) 
Mw 

R~ 2 6k(1 - qo )4y a  2 (15) 
R -1 (1 +k(1 
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Since there are two equations (equations (6) and (12)) 
relating these four unknowns Y,, ~0, a, l<, all of them can be 
determined unambiguously from the experimentally 
measured quantities M"  and R',. The increase of the 
apparent molecular weight M'~ by labelled chain 
segregation is not equal to Y, the number of molecules per 
cluster. Instead the value of q0 as well as Y determines the 
magnitude of M'w/M,,. as shown by equation (14). 

Strictly speaking, equations (14) and (15) hold true only 
for the angular region of h a<.%l and hR0-%<l. These 
criteria need to be verified after both the values of a and R 0 
have been obtained from the experimental results. The 
experiment needs to be repeated if an inappropriate h 
region was covered in the previous experiment. 

The validity of both equations (14) and (15) will be 
tested at the extreme cases of q0 = 1 and ~o = 0 as follows. 

As ~p approaches unity, the apparent molecular weight 
M' w approaches Mw, the molecular weight of individual 
labelled chain (equation (14)). The above result is desirable 
since the condition ~o = 1 dictates that the labelled chains 
are randomly distributed throughout the whole sample. 
As to the other extreme case of ~0 =0, all the labelling 
chains cluster into a small volume. The apparent 
molecular weight will approach infinity as evident from 
equations (12) and (14). The increase of the apparent radius 
of gyration due to clustering is expressed by equation (15); 
as ~0 approaches unity the value of R' o goes to R o. 

1"he physical meaning of Y expressed in equation (12) 
merits further discussion. For the case that all the labelled 
chains segregate into isolated clusters, the meaning of Y is 
straightforward and it stands for the average number of 
labelled chains per cluster. However, if the labelled chains 
segregate within an interconnected domain as proposed 
by Sadler and Keller for PEH/PED blends 3, the value of 
Y stands for the average number of the labelled chains 
occupied by a volume equal to 13 where l is about the 
width (although greater) of the interlinking branches of 
the labelled chain-rich domain. 

In a recent SANS study of PED/PEH blends with 5% 
wt. labelled chains, the measured values of M' w and R'q.go 
through a maximum with increasing anneanng 
temperature. Such puzzling results can be rationalized 
easily within the theoretical framework presented in this 
paper. The value of ~0 for specimens annealed in the 
temperature range from 100 '~ to 110°C has been found to 
be near 0.9 indicating that only 10% of the volume has 
been depleted of PED molecules. At higher annealing 
temperatures (up to 126°C), the value of 9 reaches 0.6 and 
the corresponding value of I c, Y etc. were also smaller than 
those of the annealed at relatively lower temperature. A 
more complete account of the effect of annealing and 
deformation on the cluster size will be covered in a 
forthcoming paper. 

In summary, the increase of the values of apparent M' w 
and R'  from SANS measurements in isotopic labelling 
polymer blends can be easily explained using the 
Zernicke-Prins equation. As long as the centres of mass of 
the labelled chains are not randomly distributed within 
the specimen, an enormous increase in both M' w and R'  o 
will be observed. The ratio M ' . / M  w is related, but not 
equal, to the number of labelled chains per cluster 
(equation (14)). The accompanying increase of the radius 
of gyration R' 0 does not reflect the change of the average 
size of the cluster in a straightforward manner (equation 
(15)). 
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